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The statistical physics properties of regular and irregular Sourlas codes are investigated in this paper by the
cavity method. At finite temperatures, the free-energy density of these coding systems is derived and compared
with the result obtained by the replica method. In the zero-temperature limit, the Shannon’s bound is recovered
in the case of infinite-body interactions while the code rate is still finite. However, the decoding performance
as obtained by the replica theory has not considered the zero-temperature entropic effect. The cavity approach
is able to consider the ground-state entropy. It leads to a set of evanescent cavity fields propagation equations
which further improve the decoding performance as confirmed by our numerical simulations on single in-
stances. For the irregular Sourlas code, we find that it takes the trade-off between good dynamical property and
high performance of decoding. In agreement with the results found from the algorithmic point of view, the
decoding exhibits a first-order phase transition as occurs in the regular code system with three-body interac-
tions. The cavity approach for the Sourlas code system can be extended to consider first-step replica symmetry
breaking.
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I. INTRODUCTION

Efficient and reliable transmission of information in noisy
environment plays a central role in modern information so-
ciety. Error-correcting codes, as efficient encoding/decoding
mechanisms, find widespread applications ranging from the
satellite communication to the storage of information on hard
disks. In 1948, Shannon �1� proved that error-free transmis-
sion is possible as long as the code rate R �the ratio between
the number of bits in the original message and the number of
bits in the transmitted message� does not exceed the capacity
of the channel �Shannon’s bound�. More explicitly, for the
binary symmetric channel �BSC� where each transmitted bit
is flipped independently with flip rate p, the Shannon bound
is expressed as Rc=1−H2�p�, where H2�p�=−p log2 p
− �1− p�log2�1− p� is the binary entropy in the information
theory literature �2�. This celebrated channel encoding theo-
rem forms the core of information theory. However, it does
not tell us how to construct an optimal code that saturates
Shannon’s bound. In information science many efforts have
been devoted to construct �near� optimal codes �3�.

Based on insights gained from the study of disordered
systems �4� the Sourlas code was proposed 20 years ago,
which relates error-correcting codes to spin-glass �SG� mod-
els �5�. In the past decade, the statistical mechanics analysis
of Sourlas codes has been successfully generalized to other
types of error-correcting codes including low-density parity-
check �LDPC� codes, MacKay-Neal codes, Turbo codes, etc.
Methods of statistical physics, complementary to those used
in information theory, enable one to attain a more complete
picture of decoding process by analyzing global properties of
the corresponding free-energy landscape. They also allow
one to optimize the performances of various codes by chang-
ing some construction parameters.

The procedure of constructing a Sourlas code is very
simple. To infer which bit is flipped by noise at the receiving

end of transmission, one has to introduce redundancy to the
original message at the sending end. As for the Sourlas code,
the redundancy is introduced by the Boolean sum of ran-
domly selected message bits. Through the transformation �i
= �−1�xi, where xi is the Boolean bit and �i is the Ising spin,
the original bit sequence �xi� can be regarded as an Ising spin
configuration ��i�. In this way, the modulo 2 addition is
equivalent to spin multiplication; and then the Sourlas code
can be mapped to a many-body spin-glass problem �6�. In a
general scenario, the original message is an N-dimensional
vector �� ��1�N, M��N� sets of interactions are constructed
by taking the product of randomly sampled K bits from the
sequence of the original message, i.e., Ja

0=�a1
¯�aK

�a=1, . . . ,M�. Then they are fed into the noisy channel. At
the destination, M corrupted interactions Ja, some of which
being different from those at the sending end, are received.
The arising problem is how to infer the original bits from the
knowledge of channel outputs, statistical properties of the
channel and of the source. In the presence of weak noise,
searching for the ground state of the corresponding spin-
glass model with given outputs �Ja� will lead to successful
decoding. This decoding scheme is nothing but maximum a
posterior probability �MAP� decoding. When the noise be-
comes strong, the finite temperature decoding or marginal
posterior maximizer �MPM� scheme should be adopted since
the ground state would probably contain no information
about the original message �6,7�.

The fully connected Sourlas code has been studied in Ref.
�5�. It was shown that the Shannon’s bound is achieved in the
limit R→0. Obviously, its practical potential is greatly lim-
ited. The finite rate Sourlas code of greater practical signifi-
cance has been studied later on �see, e.g., Refs. �8–10��. It
turns out that at finite coding rate R the Shannon’s bound for
the channel capacity can be attained at zero temperature at
the limit of K→� �8,10�. However, the Shannon’s bound
could not be achieved for finite K despite its practical sig-
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nificance. All the aforementioned investigations rely upon
the replica method developed initially for solving the
Sherrington-Kirkpatrick model of spin glass �4,11�. More-
over, they are restricted to the replica symmetry �RS� as-
sumption due to the emerging more complicated saddle-point
analysis of replica symmetry breaking. Nevertheless, recent
developments in the study of LDPC codes �12� showed that
the one-step replica symmetry breaking �1RSB� type algo-
rithm is able to shift the dynamical phase transition �13� to a
higher value as compared with RS-type algorithms. Similar
results were obtained on the finite connectivity Sourlas code
system from the dynamic point of view �14,15�. In this work
we study the equilibrium properties of the finite connectivity
Sourlas code system by using the cavity method of statistical
physics �16–18�.

The cavity method has its own advantages over the rep-
lica method. The latter is based on a saddle-point analysis of
n-dimensional integral in the limit n→0. This analytic con-
tinuation in the number of replicas has not been confirmed to
hold generally, neither has the validity of the exchange of the
order of two limits �N→� and n→0�. On the other hand, the
cavity method adopts a direct probabilistic analysis, which
makes it applicable to single problem instances. In this paper,
it is expected that the cavity method reproduces results ob-
tained by replica theory. Within the cavity framework, the
entropic contribution in the zero-temperature limit can be
taken into account by means of first-order corrections in tem-
perature T, which has led to interesting insights on the
ground state solution space properties of several disordered
systems such as the random vertex cover problem and the
random matching problem �19�. Following the same strategy,
we derive the evanescent cavity field propagation �ECFP�
equation for decoding Sourlas codes and find it outperforms
the traditional case where only the hard field or energetic
contribution is considered.

The rest of this paper is organized as follows. The model
is introduced in Sec. II. In Sec. III, iterative equations for
finite temperature decoding and zero-temperature decoding
are rederived respectively using the cavity method. Taking
into account the entropic contribution, we also propose the
ECFP equation. In Sec. IV, regular �with a single K value�
and irregular �with several values of K� Sourlas codes are
discussed. In this section, it is also observed that the ECFP
procedure is able to improve the decoding performance by a
significant amount. We conclude this paper in Sec. V and
make further discussions there.

II. MODEL

Hereafter, we adopt the Ising spin representation of the
Boolean numbers. In the Sourlas code scenario, the original
binary message �� ��1�N of length N is encoded into a
transmitted binary message J0= �J1

0 ,J2
0 , . . . ,JM

0 � of length M,
with the ath bit Ja

0 being the product of a subset �a of the
original message bits, Ja

0=�i��a�i �see Fig. 1�a� for a picto-
rial description, in which a parity check a is represented by a
square and a message bit is represented by a circle�. If each
parity check involves K bits and each bit is constrained by C
parity checks, then the coding rate is R� N

M = K
C . The Hamil-

tonian of the system reads as

H = − 	
a=1

M

Ja �
i��a

�i, �1�

where ��i� are referred to as dynamical spin variables for
decoding and �Ja�M is the received message. Due to the noise
in the transmission channel, the received message may not
be identical to the transmitted one �Ja

0�. We assume memo-
ryless binary symmetric channel, i.e.,

P�Ja
Ja
0� = p��Ja + Ja

0� + �1 − p���Ja − Ja
0� , �2�

where p is the flip rate.
Introducing an inverse temperature 	 as a control param-

eter, the spin configuration � is sampled with probability

P��
J� =
exp�− 	H����

Z
, �3�

where Z is the partition function. On the other hand, Hamil-
tonian �1� is invariant under the gauge transformation �i
→�i�i, Ja→Ja�i��a�i. Therefore, any general message can
be mapped onto a ferromagnetic configuration ��i=+1�. Un-
der this transformation, Eq. �2� can be rewritten as

P�Ja� = p��Ja + 1� + �1 − p���Ja − 1� . �4�

In this sense, the Sourlas code is actually a multispin ferro-
magnetically biased �J spin-glass model.

The aim of the statistical inference problem is to estimate
the marginal posterior P��i 
J�. We adopt the MPM estimator

�̂i=sgn�P��i=1 
J�− P��i=−1 
J��=sgn��i�	. To measure the
performance of decoding, one usually defines the overlap

between the estimated bits ��̂i� and the original message ��i�
as

N

M i

6C =

a

(b)(a)

(c)

FIG. 1. Factor graph representation of a random construction of
�a� Sourlas codes and ��b� and �c�� the cavity method. �a� There are
totally N bits �circles� and M parity checks �squares� in the factor
graph. Each bit �variable node� is connected to exactly six parity
checks �function nodes�, and each parity check involves three bits.
�b� A single new bit i together with six parity checks is added to the
original system denoted by the part above the dashed line. �c� A
new function node a connected to three randomly selected bits is
added to the original system.
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m�	,p� =
1

N
	
i=1

N

�i�̂i =
1

N
	
i=1

N

�i sgn��i�	, �5�

where sgn�x�=x / 
x
 for x�0. Evaluating ��i�	 directly is
computationally expensive, however, it can be well approxi-
mated using the cavity method presented in the next section.
If we focus on typical value of the decoding overlap, Eq. �5�
should be averaged over the quenched disorder, i.e.,

m�	,p� =
1

N	
i=1

N

�i�sgn��i�	�C,P�J
���
�

�6�

where C represents the average over random constructions of
codes with fixed bit’s degree C. The other two types of
quenched disorder come from the corruption process
�P�J 
��� and the distribution of the original message bits
P���. For simplicity, we concentrate on typical properties of
the system with unbiased original message and memoryless
binary symmetric channel. In the long message limit
�N→��, it is believed that the macroscopic observables for a
given instance are independent of the particular realization of
the disorder �4,10�.

III. CAVITY METHOD

Using the replica method, one is forced to work directly
with the disorder average from the start, whereas the cavity
method admits of taking the average over the quenched dis-
order after the computation. In this section, we derive the
free energy at finite temperature as well as zero temperature
for the finite connectivity Sourlas code system using the cav-
ity method and then extend the result to the irregular Sourlas
code case. Within the cavity framework, the entropic contri-
bution is considered in the zero-temperature limit and the
ECFP equation is proposed as well.

A. Finite temperature decoding

Because of the random construction of Sourlas codes, it is
reasonable to assume that the correlation between randomly
sampled bits vanishes in the long message limit. We assume
all the calculations below are within the RS ansatz �single-
state cavity method�. The results are straightforward to be
generalized to 1RSB case.

As shown in Fig. 1�b�, if we add one variable node to the
original system, C function nodes should be added simulta-
neously. Then the partition function for the enlarged system
is

Znew = 	
�i

	
��

exp�	
a=1

M

	Ja �
k��a

�k + 		
b=1

C

Jb�i �
j��b\i

� j�
= Zold	

�i

�
b

	
��j�:j��b\i

�
j��b\i


� e	hj→b�j

2 cosh 	hj→b
� · e	Jb�i�j��b/i�j

= Zold��
b
�cosh 	Jb�1 + tanh 	Jb �

j��b\i
tanh 	hj→b��

+ �
b
�cosh 	Jb�1 − tanh 	Jb �

j��b\i
tanh 	hj→b��� ,

�7�

where �i is the newly added spin, Zold

=	��exp�	a=1
M 	Ja�i��a�i� is the partition function of the old

system, hj→b is the cavity field of variable node j when func-
tion node b is removed from the graph, j��b \ i denotes the
set of bits involved in function node b but i is excluded from
this set. To derive the second equality in Eq. �7�, we have
made use of the absence of strong correlation between ran-
domly chosen spins, since for one random construction of
Sourlas codes depicted in Fig. 1�a�, the typical loop size in
the corresponding factor graph is of order log N which di-
verges in N→�. In this sense, the joint probability of a few
randomly selected spins P���a� is factorized as P���a�
��i��aP��i�, where we write single node belief P��i� as
P��i�=e	hi�i /2 cosh 	hi in terms of the local field hi acting
on the spin �i.

Upon defining the magnetization mi→b� tanh
	hi→b and the conjugate magnetization m̂b→i� tanh 	ub→i
� tanh 	Jb� j��b\itanh 	hj→b, where ub→i is termed the cav-
ity bias, one gets the free-energy shift due to one variable
node addition:

− 	�Fi = log
Znew

Zold

= log� �
b��i

�cosh 	Jb�1 + m̂b→i��

+ �
b��i

�cosh 	Jb�1 − m̂b→i��� . �8�

As the second step, one function node addition is per-
formed �cf. Fig. 1�c��. Likewise, the new partition function
reads

Znew = 	
��

exp�		
a=1

M

Ja �
k��a

�k + 	Ja �
i��a

�i�
= 	

��
e		a=1

M Ja�k��a�k	
��

e		a=1
M Ja�k��a�k

	��e		a=1
M Ja�k��a�k

e	Ja�i��a�i

= Zold	
��

P��� �e	Ja�i��a�i

= Zold 	
��i�:i��a

�
i��a

� e	hi→a�i

2 cosh 	hi→a
�e	Ja�i��a�i

= Zold · cosh 	Ja�1 + tanh 	Ja �
i��a

mi→a� . �9�

The corresponding free-energy shift is −	�Fa
=log�cosh 	Ja�1+tanh 	Ja�i��ami→a��. Finally the total
free-energy density is given by �17�
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f =
1

N
	

i

�Fi −
1

N
	

a

�
�a
 − 1��Fa

= ��Fi�pop −
K − 1

K
C��Fa�pop, �10�

where �¯ �pop means the average over populations of
�mi→a , m̂a→i� when the population dynamics recipe �17� is
adopted. The second term in the final expression of Eq. �10�
can be understood as follows: when one variable node is
added, the number of overgenerated function nodes is K−1

K C
on average; the contribution of these nodes should be elimi-
nated from the total free energy. Following the same line
mentioned above, one can write mi→a as a function of
�m̂b→i�b��i\a, then obtain a closed set of equations in the form
of distribution:

P�mi→a�

=� � �
b��i\a

Q�m̂b→i�dm̂b→i�

��mi→a −

�b��i\a�1 + m̂b→i� − �b��i\a�1 − m̂b→i�
�b��i\a�1 + m̂b→i� + �b��i\a�1 − m̂b→i�

� ,

�11a�

Q�m̂b→i� =� � �
j��b\i

P�mj→b�dmj→b�

��m̂b→i − tanh 	Jb �

j��b\i
mj→b� . �11b�

Equation �11� is nothing but the belief propagation equation
when applied to a single instance �one particular realization
of Sourlas codes� �9�. Population dynamics recipe is applied
to solve the recursive equations above. When the iteration
reaches a steady state, the free energy can be computed and
the marginal posterior can be well approximated by P��i�
=

�1+mi�i�
2 for the sparse random graph. According to Eq. �5�,

the performance of decoding is evaluated via m= 1
N	i�i�̂i

=�dmiP�mi�sgn�mi�, where the gauge transformation has
been performed and the magnetization mi obeys the distribu-
tion

P�mi� =� � �
b��i

Q�m̂b→i�dm̂b→i�

��mi −

�b��i�1 + m̂b→i� − �b��i�1 − m̂b→i�
�b��i�1 + m̂b→i� + �b��i�1 − m̂b→i�

� .

�12�

B. Zero-temperature decoding

The finite temperature decoding is facilitated through Eq.
�11�. However, searching for the ground state of the system
requires performing zero-temperature decoding, and the
equations derived above can be further simplified. Taking the
limit 	→�, one obtains the recursive equations for cavity
fields and biases:

P�hi→a� =� � �
b��i\a

dub→iQ�ub→i����hi→a − 	
b��i\a

ub→i� ,

�13a�

Q�ub→i� =� � �
j��b\i

dhj→bP�hj→b��

��ub→i − sgn�Jb �

j��b\i
hj→b�� , �13b�

and the free-energy shifts

− �Fi = C − 	
b��i


ub→i
 + � 	
b��i

ub→i� , �14a�

− �Fa = 1 – 2��− Ja �
i��a

hi→a� , �14b�

where ��x� is a step function taking values ��x�=0 for x
0 and ��x�=1 for x�0. In Eq. �13b�, we take the conven-
tion sgn�0�=0. Similarly, the overlap in the zero-temperature
limit reads m=�dhP�h�sgn�h� where the field is subject to
the distribution

P�h� = ���b��iQ�ub→i�dub→i���h − 	b��iub→i� ,

where Q�ub→i� is the distribution of cavity biases according
to Eq. �13b�.

C. Evanescent cavity fields propagation

In Sec. III B, only the hard field or energetic contribution
is considered. We expect that the neglected entropic contri-
bution will provide useful information for improving the de-
coding performance. To derive the ECFP equation, we re-
write Eq. �11� in terms of cavity fields:

�i→a � 2hi→a = 	
b��i\a

1

	
log�1 + m̂b→i

1 − m̂b→i
� . �15�

When we consider only the energetic contribution in the
zero-temperature limit, the resulting closed set of equations
Eq. �13� are called warning propagation �WP� �19�. The limit
	→� selects the ground state of the system under consider-
ation, therefore WP also corresponds to the MAP estimator.
However, as T goes to zero, the local field hi vanishes lin-
early in T, consequently contributes to the corresponding lo-
cal magnetization �18�. That is to say, even if the local field
takes value of zero, the nonvanishing evanescent part, de-
fined as the coefficient of first-order correction of cavity field
with respect to T, still results in a finite magnetization.
Therefore, these evanescent fields are expected to provide
useful information for improving the decoding performance.
Expanding the cavity field hi→a up to the first order in T, i.e.,

�i→a = 2Ii→a +
ri→a

	
, �16�

where Ii→a is an integer corresponding to the energetic con-
tribution and ri→a a finite real value corresponding to the
entropic contribution, then substituting Eq. �16� into Eq.
�15�, one readily gets ECFP equations:
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Ii→a = 	
b��i\a

sgn�Jb �
j��b\i

Ij→b� , �17a�

ri→a = 	
b��i\a

I�Ij→b = 0 ∀ j � �b \ i�log�� j��b\i�erj→b + 1� + Jb� j��b\i�erj→b − 1�
� j��b\i�erj→b + 1� − Jb� j��b\i�erj→b − 1��

+ I�at least one Ij→b = 0, at most �K − 2� Ij→b = 0 ∀ j � �b \ i� · log�� j��b\i� �1 + e−
rj→b
� + J̃b� j��b\i� �1 − e−
rj→b
�

� j��b\i� �1 + e−
rj→b
� − J̃b� j��b\i� �1 − e−
rj→b
�
�

− I�Ij→b � 0 ∀ j � �b \ i�sgn�Jb �
j��b\i

Ij→b�log�1 + Rb→i� , �17b�

where � j��b\i� ��
�Ij→b=0�
j��b\i , J̃b=Jb sgn��

�Ik→b�0�
k��b\i Ik→b�


sgn�� j��b\i� rj→b�, I� · � is the indicator function of an event,
and Rb→i=	 j��b\iR̃j→b, where R̃j→b=exp�−sgn�Ij→b�rj→b� if

Ij→b
=1 and 0 otherwise. In the summation of Eq. �17b�, the
first term corresponds to the case where Ij→b=0 for all j
��b \ i, the second term the case where at least one Ij→b=0,
at most �K−2�Ij→b=0 and the last term the case where
Ij→b�0 for all j��b \ i. Then the decoding can be easily
performed via m=�dIidriP�Ii�Q�ri��sgn�Ii�+ I�Ii=0�sgn�ri��,
where P, Q represent the distributions for the hard fields �Ii�
and evanescent fields �ri�, respectively, when the population
dynamics technique is used to solve the ECFP equations.
Actually, in the zero-temperature limit, the estimated mes-
sage bit �i=sgn�mi�=sgn�tanh 	hi�=sgn�Ii� if Ii�0 and
sgn�ri� otherwise.

D. Decoding irregular Sourlas codes

All the aforementioned computations are limited to the
regular case where the check’s degree K takes a single value.
It is worthwhile to study the irregular case. The irregular
Sourlas code is defined as the code with various values of K.
We assume the check’s degree K follows a distribution with
two delta peaks

P�K� = ���K − 2� + �1 − ����K − 3� . �18�

We adopt this form of distribution for two reasons. One is the
Sourlas code has perfect dynamical properties for K=2 and
high decoding performance for K=3. The other is the result
can be compared with that obtained for the cascading Sourlas
code �15,20�. The formula for the total free-energy density of
the combined system is given by

f =
1

N
	

i

�Fi −
1

N
	

a

�
�a
 − 1��Fa

= ��Fi�pop −
M

N
	
K

P�K��K − 1���Fa�pop

= ��Fi�pop −
C

K̄
����FK=2�pop + 2�1 − ����FK=3�pop� ,

�19�

where K̄=3−� and the code rate R= 3−�
C . The recursive equa-

tions are of the form

P�mj� =� ��
b=1

C−1

dm̂bQ�m̂b��

��mj −

�b=1
C−1�1 + m̂b� − �b=1

C−1�1 − m̂b�
�b=1

C−1�1 + m̂b� + �b=1
C−1�1 − m̂b�

� ,

�20a�

Q�m̂b� = 	
K

P�K�K

K̄
� ��

j=1

K−1

P�mj�dmj�

��m̂b − tanh 	Jb�

j=1

K−1

mj� . �20b�

Equation �20b� can be understood as follows: since � repre-
sents the fraction of function nodes with two-spin interac-
tion, for one randomly chosen bit, it is connected to a parity
check involving two bits with probability P2= 2�

3−� and to that
involving three bits with probability P3= 3�1−��

3−� . Obviously,
P2+ P3=1. The formula for zero-temperature decoding of ir-
regular codes can be derived similarly. In the next section,
we will discuss the performance of decoding for regular and
irregular codes, respectively.

IV. RESULTS AND DISCUSSIONS

A. Regular Sourlas codes

Properties of regular Sourlas codes have been studied us-
ing replica theory �8,10�. In this section, we reproduce
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results obtained on regular Sourlas codes on the basis of the
cavity method.

For regular Sourlas codes, we consider the case of K=2
and K=3 with the same code rate R=0.5. In particular, the
other cases �K�3� show the same qualitative behavior as the
K=3 case. It is worthwhile to mention that Eq. �11� yields a
paramagnetic solution, i.e., P�mi→a�=��mi→a� ,Q�m̂b→i�
=��m̂b→i�. Following Eq. �10�, one readily acquires the para-
magnetic free energy fpara=− 1

	 �log 2+ 1
R log cosh 	� and the

entropy spara= 1
R �log cosh 	−	 tanh 	�+log 2. In zero-

temperature limit, spara= �1− 1
R �log 2. Since the entropy be-

comes negative when R�1, the paramagnetic solution is ir-
relevant for the error-correcting purpose. On the other hand
the RS spin-glass solution reduces to the paramagnetic one,
therefore, the replica symmetry should be broken for low
enough temperature, and a simple assumption �frozen spins
assumption� is adopted to avoid the negative entropy �8,10�,
i.e., for low enough temperature, the system settles in a com-
pletely frozen glassy phase. On the transition boundary, both
the frozen glassy phase and paramagnetic phase share the
identical free energy, and the transition temperature is deter-
mined by spara�	g�=0. When T�Tg, the spin-glass phase
takes over, and the corresponding free-energy density can be
written as fsg= fpara�	g�, independent of the temperature. Be-
sides the paramagnetic and spin-glass solution, there exists a
ferromagnetic solution �m=1�. This solution is possible only
in the case of K→� �note that R is kept finite�. The related
ferromagnetic free energy with vanishing entropy could be
derived according to Eq. �10�, i.e., f ferro=− 1

R �1−2p�, inde-
pendent of the temperature as well. By identifying f ferro with
fsg, one can recover the Shannon’s bound as predicted by
Shannon’s channel encoding theorem, implying pc
�0.110 028 when R=0.5 �cf. Fig. 2�a�, the arrow indicates
this critical noise level�. We report the phase diagram for the

K→� code in Fig. 3, note that the code rate is still kept to be
finite. It is important to remark that when the finite connec-
tivity is considered, modest loss in the final decoding quality
should be paid, i.e., the decoding overlap will be smaller
than unity. To illustrate the phase transition in the finite con-
nectivity case, we refer to the phase with finite decoding
overlap as the ferromagnetic phase until the glassy phase
dominates. The ferromagnetic-spin-glass transition is deter-
mined by identifying the ferromagnetic free energy with fro-
zen glassy free energy, then the glassy phase �m=0� sets in to
replace the ferromagnetic phase �finite m�. The correspond-
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FIG. 2. �Color online� The decoding performance for regular Sourlas codes with R=0.5. The calculated mean values are shown and the
corresponding variances are smaller than the symbol size. �a� The replica symmetry free-energy density versus flip rate when zero-
temperature decoding is performed. The solid line corresponds to K=2 case while the dotted line K=3 case. The dashed line represents the
case of K→�, and the dashed-dotted line corresponds to the frozen spin solution. The arrow indicates the critical noise level where the
Shannon’s bound is achieved. �b� The replica symmetry free-energy density versus flip rate when finite temperature decoding is performed.
The decoding temperature is chosen to be Nishimori temperature 	p= 1

2 log1−p
p . Insets: the overlap versus flip rate for zero-temperature and

finite temperature decoding, respectively.
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FIG. 3. �Color online� The phase diagram for regular Sourlas
codes with K→� keeping R=0.5. The dashed line indicates the
Nishimori line, the dotted line the boundary between spin-glass
�SG� phase and ferromagnetic �F� phase, the dashed-dotted line the
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ing critical noise level is obviously smaller than the point
where the magnetization �more precisely the decoding over-
lap� drops to zero.

To solve Eq. �11�, population dynamics technique intro-
duced in Ref. �17� is applied. The size of population is taken
to be of order 104. Results are reported in Fig. 2. For K=2,
no prior knowledge of the original message is required for
decoding, and the phase transition is of second order. As
shown in Fig. 2�a�, the critical noise level is determined by
the point where the frozen spin free energy coincides with
the RS free energy. After the transition, the spin-glass phase
dominates and the corresponding free energy is fixed to be
fsg. Conversely, the phase transition is of first order for K
=3, and there is a remarkable drop in the free-energy profile.
However, the computed free energy, which seems to be
lower than the frozen spin one, is unphysical after the phase
transition because of its corresponding negative entropy.
Therefore the RS assumption is incorrect and many states
assumption should be adopted. The performance of finite
temperature decoding is also shown in Fig. 2�b�. The decod-
ing temperature is chosen to be the optimal one, 	p

= 1
2 log1−p

p named Nishimori temperature �6,7�. In this case,
the thermal temperature is identical to the noise temperature,
and it is observed that the performance is better than that of
zero-temperature decoding. Actually, the average spin align-
ment m of decoding at Nishimori temperature sets an upper
bound for all achievable alignments �7�. As our numerical
simulation has shown, only the Nishimori temperature sur-
vives to get high overlap when the critical noise level is
approached. In contrast to the K=2 case, the case of K=3
improves the decoding performance significantly. However,
the basin of attraction �BOA� shrinks dramatically. We have
to assume initial bias mI=0.8 for finite temperature decoding
and mI=0.75 for zero-temperature decoding. The compro-
mise between good dynamical properties on one side �K
=2� and good performance on the other side �K=3� moti-
vates the following investigation of the typical properties of
the combined system with various K.

To further improve the decoding performance in the limit
when the temperature goes to zero, we have proposed the
ECFP equation in Sec. III C. The decoding overlap is plotted
against the flip rate in Fig. 4. Results obtained by WP are
also shown for comparison. Apparently, the decoding perfor-
mance is improved within an intermediate range of flip rate.
In the presence of weak noise, most of the propagating cavity
fields take values larger than 2 and the energetic contribution
plays a dominant role. Thus both methods lead to identical
performance. Once the noise becomes no more small, the
decoding performance achieved by ECFP starts to deteriorate
due to the divergence of some of the evanescent fields. If we
set a cutoff �e.g., 4.0�, to our surprise, the problem mentioned
above can be successfully circumvented. As shown in Fig. 4,
the result indeed outperforms that obtained by WP which
neglects the entropic effects. This can be understood as fol-
lows, as flip rate becomes high enough, the relevant cavity
fields with 
Ii→a
=1 or Ii→a=0, emerge and contribute to the
entropic effects �19�. These information, omitted by WP, is
correctly extracted by ECFP procedure, and the decoding
performance is finally boosted. According to our numerical
simulations, the value �e.g., 3.0, 4.0, 5.0� we choose for the

cutoff does not affect the decoding results. When zero-
temperature decoding is concerned, we have observed that
ECFP is able to do a better job than WP since the entropic
effects have been incorporated. However, its decoding per-
formance still lies beneath that achieved by the optimal de-
coding �MPM� where the decoding temperature is chosen to
be the Nishimori type. However, for MPM, one has to have a
prior knowledge of the channel noise, i.e., the flip rate of the
noise. We present the comparison between these two differ-
ent kinds of decoding in Fig. 5. In order to validate the
mean-field results, we run the ECFP decoding algorithm on a
single instance. The comparison is shown in Fig. 4. The size
of the graph is set to be N=10 000 and the code rate R
=0.5. For one iteration step, messages sent from each bit on
the graph are updated one time on average. We also set the
maximal number of iteration steps T to be 500. The decoding
result on single graph is averaged over ten individual simu-
lations for each flip rate p. As observed in our simulations,
the number of iteration steps, around p=0.12, exceeds the
preset value on most of the presented instances, which mani-
fests the ECFP starts to lose the convergence on a single
graph. However, the agreement with the mean-field result is
excellent.

B. Irregular Sourlas codes

As defined above, the irregular Sourlas code is a com-
bined system with various values of K. It takes well the
trade-off between excellent convergence property of low-K
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FIG. 4. �Color online� The decoding overlap m as a function of
flip rate p for regular Sourlas codes with R=0.5. The solid or
dashed line corresponds to zero-temperature decoding for the K
=2 case while the dotted or dashed dotted line the K=3 case. The
solid or dotted one represents results obtained by the conventional
warning propagation �WP� while the dashed or dashed dotted one
evanescent cavity fields propagation �ECFP�. The cutoff takes the
value 4.0. Numerical simulations on a single graph by ECFP are
consistent with the mean-field results. The size of the graph is N
=10 000. The decoding result on single graph is averaged over ten
individual simulations for each flip rate p. The error bars indicate
the standard deviations. Inset: a detailed view of the significant
improvement using ECFP for the K=3 case.
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codes and high decoding performance of high-K codes. From
the algorithmic point of view, the irregular code is also
termed cascading code put forward in Ref. �20� and further
studied in Ref. �15�. In this section, we report results on
typical properties of the combined system based on the cav-
ity analysis presented in Sec. III D.

To retain the same code rate R=0.5, we choose C=5, �
=0.5 as code construction parameters. Population dynamics
recipe is used to solve Eq. �20�, and the size of population is
assumed to be of order 104. As shown in Fig. 6, the com-
bined system exhibits a first-order phase transition as the K
=3 case, which was also observed in Ref. �15� where the
cascaded encoding/decoding scheme was employed. After
this transition, the free energy crosses over to a lower value.
However, as the flip rate p increases to a high enough value,
the RS entropy will be negative and the RS assumption is
then incorrect, indicating replica symmetry should be bro-
ken. As observed in Fig. 6, the finite temperature �Nishi-
mori’s temperature� decoding is superior to the zero tempera-
ture one when the noise level becomes no longer low.
Compared with the regular code of K=3, the BOA for the
combined system becomes larger thus we only need to take
the initial bias mI=0.6. Additionally, the overlap of decoding
for the combined system is higher than that of K=2. There-
fore, results demonstrated in Fig. 6 provide us an opportunity
to construct an optimal code. As has been stated in Refs.
�15,20�, one can use multiple values of K in the interactions.
As a first step, belief propagation or 1RSB algorithm is run
on a partial system with only low K�K=2� interactions since
the low-K code has perfect convergence properties. The end
overlap at the first stage is expected to be well within the
BOA of the combined system. Once higher body �e.g., K
=3� interactions are invoked, an end overlap higher than the
one obtained by the initial step will be resulted in.

V. CONCLUSIONS AND FUTURE PERSPECTIVES

In this work, we have studied the finite connectivity Sour-
las code based on the cavity method. Conventional replica
results on the regular code are cross-checked. Moreover, this
cavity analysis is extended to the irregular case. Typical
properties of the combined system are investigated. It is
shown that the decoding for the combined system exhibits a
first-order phase transition as occurs in the regular case �K
=3�. The combined system is of two striking features, one is
the initial bias required for convergence is degraded, the
other is the final performance is enhanced. Actually, this does
mean that the good dynamical properties �large BOA� and
high decoding performance should be compromised in the
algorithmic implementation. Thus introducing gradually
higher K interactions seems to be an effective way to take
advantage of this trade-off.

As for the regular codes system, the evanescent cavity
fields propagation equation is proposed. And it is capable of
extracting the entropic information in the zero-temperature
limit, thus the decoding performance is considerably en-
hanced compared with the traditional case where only the
hard field is taken into account. Numerical simulations on
single instances are compatible with the mean-field results.

The cavity methodology, applied in our work, is very
promising. Unlike replica trick, it formulates assumptions in
a more explicit manner, even opens the way to algorithmic
implementations on one single instance. In this work, we
also discovered that the system shows negative entropy in
the presence of low enough decoding temperature and high
enough flip rate, therefore 1RSB is needed for further inves-
tigation on the finite connectivity Sourlas code. Fortunately,
the cavity method can be easily generalized to 1RSB case.
Meanwhile, the frozen spin-glass scheme we have adopted in
Sec. IV A could be also cross-checked. On the other hand,
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FIG. 6. �Color online� The decoding performance for irregular
Sourlas codes with R=0.5. The calculated mean values are shown
and the corresponding variances are smaller than the symbol size.
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dotted line finite temperature decoding. Inset: the overlap versus flip
rate.
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further study is required for the combined system to eluci-
date under what conditions the channel capacity is achieved
�21�. Finally, the methodology is expected to be applied to
more practical codes like LDPC codes. These lines of re-
search are currently under way and these further investiga-
tions are anticipated to provide deeper insights into a variety
of codes with low-density nature of constructions.

ACKNOWLEDGMENTS

We thank Pan Zhang and Jie Zhou for stimulating discus-
sions, and we are grateful to anonymous referees for many
helpful comments. The present work was in part supported
by the National Science Foundation of China �Grant No.
10774150� and by the National Basic Research Program
�973-Program� of China �Grant No. 2007CB935903�.

�1� C. E. Shannon, Bell Syst. Tech. J. 27, 379 �1948�; 27, 623
�1948�.

�2� T. M. Cover and J. A. Thomas, Elements of Information
Theory �Wiley, New York, 1991�.

�3� R. G. Gallager, Low-Density Parity-Check Codes �MIT Press,
Cambridge, 1963�; D. J. C. MacKay and R. M. Neal, Electron.
Lett. 32, 1645 �1996�; D. J. C. MacKay, IEEE Trans. Inf.
Theory 45, 399 �1999�; A. Montanari and N. Sourlas, Eur.
Phys. J. B 18, 107 �2000�.

�4� M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory
and Beyond �World Scientific, Singapore, 1987�.

�5� N. Sourlas, Nature �London� 339, 693 �1989�; Europhys. Lett.
25, 159 �1994�.

�6� H. Nishimori, Statistical Physics of Spin Glasses and Informa-
tion Processing: An Introduction �Oxford University Press,
Oxford, 2001�.

�7� P. Ruján, Phys. Rev. Lett. 70, 2968 �1993�; H. Nishimori, J.
Phys. Soc. Jpn. 62, 2973 �1993�.

�8� Y. Kabashima and D. Saad, Europhys. Lett. 45, 97 �1999�.
�9� Y. Kabashima and D. Saad, Europhys. Lett. 44, 668 �1998�.

�10� R. Vicente, D. Saad, and Y. Kabashima, Phys. Rev. E 60, 5352
�1999�.

�11� D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792
�1975�.

�12� G. Migliorini and D. Saad, Phys. Rev. E 73, 026122 �2006�.
�13� S. Franz, M. Leone, A. Montanari, and F. Ricci-Tersenghi,

Phys. Rev. E 66, 046120 �2002�.
�14� B. Wemmenhove and H. J. Kappen, J. Phys. A 39, 1265

�2006�.
�15� J. P. L. Hatchett and Y. Kabashima, J. Phys. A 39, 10659

�2006�.
�16� M. Mézard and A. Montanari, Information, Physics, and Com-

putation �Oxford University Press, Oxford, 2009�.
�17� M. Mézard and G. Parisi, Eur. Phys. J. B 20, 217 �2001�; J.

Stat. Phys. 111, 1 �2003�; H. Zhou, Fron. Phys. China 2, 238
�2007�.

�18� M. Mézard, G. Parisi, and R. Zecchina, Science 297, 812
�2002�; M. Mézard and R. Zecchina, Phys. Rev. E 66, 056126
�2002�.

�19� L. Zdeborová and M. Mézard, J. Stat. Mech.: Theory Exp. �
2006� P05003; L. Zdeborová and F. Krząkała, Phys. Rev. E
76, 031131 �2007�; J. Zhou and H. Zhou, ibid. 79, 020103�R�
�2009�; P. Zhang, Y. Zeng, and H. Zhou, ibid. 80, 021122
�2009�.

�20� I. Kanter and D. Saad, Phys. Rev. E 61, 2137 �2000�.
�21� R. Vicente, D. Saad, and Y. Kabashima, in Advances in Imag-

ing and Electron Physics, edited by P. Hawkes �Academic
Press, New York, 2002�, Vol. 125, pp. 232–353.

CAVITY APPROACH TO THE SOURLAS CODE SYSTEM PHYSICAL REVIEW E 80, 056113 �2009�

056113-9


